

Vincennes University

Indiana Center for Applied Technology (ICAT) - Industrial Maintenance Training

Advanced Manufacturing Machinery Technician NOW (AMMT NOW)

Goals:

- 1. To provide high quality training on state-of-the-art equipment to help bridge the Advanced Manufacturing "skills gap".
- 2. To provide well-rounded entry-level skilled Industrial Maintenance Technicians to the <u>advanced</u> <u>manufacturing</u> and <u>machinery service</u> industry in the U.S.
- 3. To improve the technical skills of incumbent workers.
- 4. To prepare Veterans and Civilian adult learners for gainful employment as Industrial Maintenance and Machine Service Technicians.
- 5. To provide a solid foundation for life-long learning in the field of advanced manufacturing.

6. To develop a flexible system to allow HAAS Factory Outlets to pick and choose the training and length of training for their specific needs for that class.

Description:

The Vincennes University Advanced Manufacturing Machinery Technician NOW program is an accelerated training program up to 16 weeks in length (HFO group can modify if desired) to prepare trainees for employment in industrial maintenance or machine service with emphasis on machine tool, robotics and automation maintenance. The training provides hands on experience in AC/DC electrical components, electric motor controls, PLC's, servo, vector and frequency drives, mechanical drive systems, schematic print reading, industrial safety, robotics, along with hydraulics, pneumatics, mechatronics, and basic CNC machine setup, programming and operation. Those completing this program will be prepared to troubleshoot industrial equipment such as robots, CNC machine tools and other automated equipment; install, repair and replace mechanical, electrical, hydraulic and pneumatic parts; and create basic programs for automated equipment.

Eligibility:

This program is designed for Veteran and Civilian adult learners. Recent high school graduates are referred to Vincennes University's two year Computer Integrated Manufacturing program. Students must pass a general mechanical knowledge assessment to show a minimum aptitude for industrial maintenance training.

Certificate:

Upon successful completion of the program, the trainee will be awarded with a Vincennes University Certificate of Completion of the Advanced Manufacturing Machinery Technician NOW program.

Facility:

VU will provide all the training at the ABB Robotics and Industrial Maintenance Lab which is located on Vincennes University's main campus in the Indiana Center of Applied Technology building (ICAT). The lab consists of 20 Industrial sized ABB robots, 3 full size HAAS CNC machines, 4 AC/DC Electrical Systems trainers, 4 Electric Motor Control trainers, 4 PLC trainers (digital, analog, DeviceNet, EtherNet), 4 Electronic Sensor trainers, 4 AC Electronic Drive trainers, 4 Mechatronics trainers, 4 Hydraulic and Pneumatic trainers, 1 HVAC trainer, and 4 Mechanical Drives trainers.

Tuition and Fees:

The tuition cost of the 16 week program is \$8,000. Book fees will be an additional \$975. (longer or shorter programs as dictated by HFO's would be adjusted accordingly, roughly \$500 per week)

Industrial Maintenance Lecture/Lab 7:30AM - 4:00PM M-F (includes 1 hr. break for lunch)

Project/Programming/Study Lab 37.5 hrs/week

Total Training hours

16 weeks X 5 days/week X 7.5 hours/day = 600 hours, minus 4 holidays (30 hrs.) = 570 hours

Implementation

The first Advanced Manufacturing Machinery Technician NOW program began October 27, 2014 and will run 2-3 times per year based on student volume. Contact the Director or Instructor below for the dates of the next class. Class size will be limited to 8 students per class to allow no more than two students per trainer. A minimum class size of 4 students is required to hold a class.

Placement:

Vincennes University will use its own resources along with Save Our Veterans, Operation: Job Ready Veterans, WorkOne in Indiana, and its counterpart one-stop employment centers in other states, and through industry partners, along with multimedia contact. Ideally, companies will be involved in the candidate selection process from the beginning.

Textbook(s):

78 Amatrol Learning Activity Packets ABB IRC5 Robot Manuals

For more information, contact:

Jerry Ruble

Director, Industrial Maintenance and ABB Robotics Training Indiana Center for Applied Technology (ICAT), Room 105 Vincennes University Email: <u>iruble@vinu.edu</u> phone: 812-888-4346 cell: 812-890-6702

Hubie Holland

Instructor, Industrial Maintenance Training Indiana Center for Applied Technology (ICAT), Room 105 Vincennes University Email: <u>hholland@vinu.edu</u> phone: 812-888-4413 cell: 812-259-1148

COURSE OVERVIEW:

SECTION 1 – (7.5 clock hours total) Introduction to Industrial Maintenance/Technician

SECTION 2 – (included in section 3 - 14) Workplace safety, measuring and math (to be incorporated into each section as needed)

SECTION 3* – (30 clock hours total) AC and DC Electricity

SECTION 4* – (45 clock hours total) *Electric Motor Control*

SECTION 5* – (7.5 clock hours total) *Electronic Sensors*

SECTION 6* – (60 clock hours total) Mastering Programmable Logic Controllers (PLC's)

SECTION 7* – (18.75 clock hours total) *PLC Analog Application*

SECTION 8^{*} – (15 clock hours total) PanelView Operator Interface

SECTION 9^{*} – (15 clock hours total) DeviceNet – ControlLogix

SECTION 10^{*} – (37.5 clock hours total) AC Electronic Drives

SECTION 11* – (48.75 clock hours total) *Mechanical Drives*

SECTION 12* – (48.75 clock hours total) *Hydraulics*

SECTION 13* – (45 clock hours total) *Pneumatics*

SECTION 14* – (____ clock hours total) HAAS Specific Training- hours dependent on subjects)

SECTION 15* – (45 clock hours total) *Robotic Training*

SECTION 16 – (37.5 clock hours total) *Review, Projects, Testing*

COURSE OUTLINE:

Basic Industrial Maintenance Practices

Introduction to maintenance, repair and troubleshooting industrial equipment as well as safety, careers,

workplace skills, technical math, measuring and monitoring systems.

Exploration of the basic electrical components using AC and DC electricity, designs for motor control systems, PLC programming, fluid power and mechanical systems.

Introductions to lathes, mills, robots and machine control systems. Hands-on learning and practical application will account for 50% of training time. Safety, schematic print reading, troubleshooting skills and problem solving are heavily emphasized throughout the training.

SECTION 1 – (7.5 clock hours total) Introduction to Industrial Maintenance/Technician Unit 1 – Introduction to Industrial Maintenance (3 hours)

Introduction Industrial Maintenance Defined The role of maintenance Common manufacturing machines

Unit 2 – Careers in Industrial Maintenance/Technician (1 hours)

Introduction Modern maintenance and technician careers

Unit 3 – Workplace Skills – (3.5 hours)

Introduction Personal Skills Technical Skills Training opportunities Job Seeking

SECTION 2 – (included in sections 3 - 14) Workplace safety, measuring and math

General safety guidelines Clothing in a manufacturing/industrial environment Personal Protective Equipment (PPE) Housekeeping (5S) Guards and barriers Handling and lifting Compressed air/hydraulic pressure safety Lock out Tag out (LOTO) Hazardous Materials Fire Safety Safety documentation

Measurement Systems and Math

Introduction Measurement systems for maintenance and technicians Math for maintenance and technicians

Measurement

Rules Tape measures Straight edges Scales Calipers Micrometers Dial Indicators Pin gauges

Quality Systems

Quality systems Quality control Role of maintenance/technicians in quality

SECTION 3 – (30 clock hours total) AC and DC Electricity

Unit 1 – Basic Electrical Circuits - (4.5 hours) Fundamentals of Electricity Electrical Circuit Components Manual Input Devices Output Device

Unit 2 – Electrical Measurements - (5 hours)

Voltage Measurements Introduction to Series and Parallel Circuits Current Measurements Resistance Measurements

Unit 3 – Circuit Analysis – (5 hours)

Power in Series Circuits Power in Parallel Circuits Circuit Protection Devices

Unit 4 – Inductance and Capacitance – (5.5 hours)

Electromagnetism Inductance Capacitance Characteristics of Capacitance Inductor and Capacitance Applications

Unit 5 – Combination Circuits – (5.5 hours)

Characteristics Lighting Circuits Voltage Dividers Troubleshooting

Unit 6 – Transformers – (4.5 hours) Introduction Sizing a transformer Transformer types

SECTION 4 – (45 clock hours total)

Electric Motor Control Unit 1 – Introduction to Electric Motor Control - (4.5 hours) Electrical Safety Three phase power Disconnects and Protective Devices Three Phase Motors

Unit 2 – Manual Motor Control and Overload Protection – (4.5 hours)

Manual Motor Control Manual Motor Starter Operation Overload Protection

Unit 3 – Control Transformers – (4.5 hours)

Introduction Control Transformer Operation Control Transformer Applications in Machine Control

Unit 4 – Control Ladder Logic – (4.5 hours)

Electrical Control System Basics Ladder Diagram Basics Logic Elements 1 Logic Elements 2

Unit 5 – Control Relays and Motor Starters – (4.5 hours)

Control Relays Magnetic Motor Starters Two-wire Control Three-wire Start/stop Control

Unit 6 – Introduction to Troubleshooting - (4.5 hours)

Introduction to Troubleshooting Control Component Troubleshooting Motor Starter Troubleshooting Power Component Troubleshooting

Unit 7 – Systems Troubleshooting - (4.5 hours)

Test Equipment for Troubleshooting Introduction to Systems Troubleshooting Systems Troubleshooting Methods Troubleshooting Applications

Unit 8 – Reversing Motor Control - (4.5 hours)

Manual Motor Reversing Reversing Magnetic Motor Starter Interlocking for Reversing Motor Control Modes of Operation Hand-Off-Auto Control

Unit 9 – Automatic Input Devices - (4.5 hours)

Limit Switches Float Switches Pressure Switches Sequence Control

Unit 10 – Basic Timer Control - (4.5 hours) On-Delay Timers Off-Delay Timers Troubleshooting

SECTION 5 – (7.5 clock hours total) Electronic Sensors Unit 1 – Introduction to Electronic Sensors - (3.5 hours) Introduction to Electronic Sensors Inductive Sensors Capacitive Sensors

Unit 2 – Electronic Sensor Applications - (4 hours) Magnetic Reed Sensors Hall Effect Sensors Photoelectric Sensors

Sensor Applications

SECTION 6 – (60 clock hours total) Mastering Programmable Logic Controllers

Unit 1 – Introduction to Programmable Controllers - (5 hours) PLC Orientation PLC Operation PLC Programming Languages

Unit 2 – Basic PLC Programming - (5 hours)

PLC Program Instructions Numbering Systems Project Creation and Organization Programming Software

Unit 3 – PLC Motor Control - (5 hours)

PLC Program Analysis Motor Control Basics Seal-In Program Logic Data Types and User Defined Tags Interlock Functions

Unit 4 – Discrete I/O Interfacing - (5 hours)

Basic Input Interfacing Basic Output Interfacing Electronic Device Interfacing

Unit 5 – PLC Timer Instructions - (5 hours)

Retentive Timer Instructions Non Retentive Timer Instructions Time Driven Sequencing and Applications

Unit 6 – PLC Counter Instructions - (5 hours)

Count Up Instruction Count Down Instruction BCD Thumbwheel Switches LED Displays

Unit 7 – Introduction to PLC Troubleshooting - (5 hours)

PLC Troubleshooting Power Supply Troubleshooting Input Troubleshooting Output Troubleshooting

Unit 8 – PLC Systems Troubleshooting - (5 hours) Processor Troubleshooting Systems Troubleshooting Techniques Program Documentation

Unit 9 – Event Sequencing - (5 hours)

Introduction to Event Sequencing Continuous Cycle Logic Multiple Actuator Event Sequencing

Unit 10 – Application Development - (5 hours)

Program Development Modes of Operation Stop Functions Timers and Counters Applications

Unit 11 – Process Control Instructions - (5 hours)

Program Initialization Master Control Reset Subroutines Jump and Label Instructions

Unit 12 – Math and Database Instructions - (5 hours)

Add Instruction Subtract Instruction Multiply and Divide Instructions Move Instructions

SECTION 7 – (18.75 clock hours total) PLC Analog Application

Unit 1 – Analog Input Modules - (5 hours)

Sensors Module Installation Module Operation Editing Analog Input Configuration

Unit 2 – Analog Input Configuration and Troubleshooting - (4.5 hours)

Comparison Instructions ON/OFF Control Using Analog Inputs Analog Input Alarms and Status Troubleshooting Analog Input Modules

Unit 3 – Analog Output Modules - (4.75 hours)

Analog Output Devices Module Installation Module Operation Output Tag Structure

Unit 4 – Analog Output Configuration and Troubleshooting - (4.5 hours)

Module Configuration Wireoff Fault Bits Troubleshooting Analog Output Modules

SECTION 8 – (15 clock hours total)

PanelView Operator Interface

Unit 1 – Introduction to PanelView Plus - (5 hours)

PanelView Plus Construction PanelView Plus Configuration FactoryTalk View Studio – Machine Edition PanelView Plus Application Transfer

Unit 2 – PanelView Plus Application Editing I - (5 hours)

Tags and Communications Studio-Me Software Operation Application Displays Input and Output Objects

Unit 3 – PanelView Plus Application Editing II - (5 hours)

Numeric Input and Output Editing Studio-Me Displays Local Messages Alarms, Diagnostic and Information Messages

SECTION 9 – (15 clock hours total)

DeviceNet - ControlLogix

Unit 1 – Industrial Communications Networks - (5 hours) Network Operation Installation Module Configuration Ethernet/IP Configuration

Unit 2 – DeviceNet I/O - (5 hours)

RSNetWorx for DeviceNet Downloading and the EDS Wizard Node Commissioning and Online Configuration

Unit 3 – DeviceNet Troubleshooting - (5 hours)

DeviceNet Tags Introduction to DeviceNet Troubleshooting Intermittent and Multi-node Troubleshooting

SECTION 10 – (37.5 clock hours total) AC Electronic Drives

Unit 1 – Introduction to AC Drives - (5 hours) Variable Frequency Drives Drive Categories and Levels The Allen-Bradley PowerFlex 70 Drive PowerFlex 70 Drive Configuration

Unit 2 – Configuring A-B PowerFlex 70 Drives - (5 hours)

PowerFlex 70 Drive Parameter Organization Configuring and Tuning PowerFlex 70 Drive Monitoring Drive Parameters

Unit 3 – A-B PowerFlex 70 Control Parameters - (5 hours)

PowerFlex 70 Motor Control Parameters PowerFlex 70 Speed Command Parameters PowerFlex 70 Dynamic Control Parameters PowerFlex 70 Input and Output Parameters

Unit 4 – Communications and Diagnostics for A-B PowerFlex 70 Drives - (4.5 hours)

Utility Parameters PowerFlex 70 Communications Power and Diagnostic Parameters

Unit 5 – Troubleshooting A-B PowerFlex 70 Drives- (4.5 hours)

Drive Faults VFD Troubleshooting Troubleshooting Inputs

Unit 6 – Configuring and Troubleshooting A-B PowerFlex 40 Drive- (4.5 hours)

General Purpose AC Drive Fundamentals Acceleration and Deceleration Control Torque Control Stop Modes General Purpose AC Drives Troubleshooting

Unit 7 – Configuring and Troubleshooting Servo Drives- (4.5 hours)

Basic AC Servo Drive Components AC Servo Feedback AC Drive Tuning AC Servo Drive Troubleshooting

SECTION 11 – (48.75 clock hours total)

Mechanical Drives

Unit 1 – Introduction to Mechanical Drive Systems - (4.5 hours)

Mechanical Power Transmission Safety Machine Installation Motor Mounting Shaft Speed Measurement

Unit 2 – Key Fasteners - (4.5 hours)

Keyseat Fasteners Key Assembly Torque and Power Measurement Mechanical Efficiency

Unit 3 – Power Transmission Systems - (4.5 hours)

Introduction to Shafts Introduction to Bearings Introduction to Couplings Shaft Alignment

Unit 4 - Introduction to V Belt Drives - (4.5 hours)

Belt Drive Concepts V-Belt Operation Belt Tensioning Belt Tension Measurement

Unit 5 – Introduction to Chain Drives - (4.5 hours)

Chain Drive Concepts Chain Drive Operation Chain Tensioning Chain Tension Measurement Fixed Center Chain Installation

Unit 6 – Spur Gear Drives - (4.5 hours)

Spur Gear Concepts Gear Drive Designs Spur Gear Operation Spur Gear Installation Spur Gear Analysis

Unit 7 – Multiple Shaft Drives - (4.5 hours)

Multiple Shaft Gear Analysis Multiple Shaft Drive Installation Sleeve Couplings

Unit 8 - Brakes and Clutches - (4.5 hours)

Brake and Clutch Concepts Brakes Friction Clutches Cam Clutches

Unit 9 - Brake/Clutch Selection and Maintenance - (4.25 hours)

Brake/Clutch Combinations Brake and Clutch Selection Brake and Clutch Maintenance

Unit 10 – Linear Ball Bushings - (4.25 hours)

Linear Drives Linear Ball Bushing Applications Linear Ball Bushing Maintenance and Selection

Unit 11 – Ball Screw Drives - (4.25 hours)

Ball Screw Operation Ball Screw Applications Ball Screw Identification Ball Screw Selection and Maintenance

SECTION 12 – (48.75 clock hours total) Hydraulics

Unit 1 – Hydraulic Power Systems - (4.5 hours) Introduction to Hydraulics Power Unit Operation Circuit Connections Basic Cylinder Circuits

Unit 2 – Basic Hydraulic Circuits - (4.5 hours)

Pumps Needle Valves Basic Motor Circuits Hydraulic Schematics

Unit 3 – Principles of Hydraulic Pressure and Flow - (4.75 hours)

Pressure VS. Cylinder Force Hydraulic Leverage Fluid Friction Absolute VS. Gauge Pressure

Unit 4 – Hydraulic Speed Control - (5 hours)

Relief Valves Check Valves Flow Control Valves Meter-In and Meter-Out Circuits Flow Control Circuit Design Flow Rate VS. Cylinder Speed

Unit 5 – Pressure Control Circuits - (5 hours)

Sequence Valves Sequence Valve Application Pressure Reducing Valves Pressure Reducing Valves Applications

Unit 6 – Hydraulic DCV Applications - (5 hours)

Overview of the DCV Two-Position DCV's Pilot Operated DCV's Cam Operated DCV's

Unit 7 – Hydraulic Cylinder Applications - (5 hours)

Cylinder Types Regeneration Circuits Pressure Compensated Flow Control Valves Synchronization Circuits

Unit 8 – Hydraulic Relief Valve Operation - (5 hours)

Pilot Operated Relief Valve Operation Pump Unloading Applications Remote Pressure Control

Unit 9 – Hydraulic Check Valve Applications - (5 hours)

Pressure Port Check Valve Circuit Pilot Operated Check Valves Pilot Operated Check Valve Applications Pilot Operated Check Valve Circuit Design

Unit 10 – Accumulator Applications - (5 hours)

Accumulator Operation Accumulator Circuits Accumulator Applications Accumulator Sizing

SECTION 13 – (45 clock hours total)

Pneumatics Unit 1 – Pneumatic Power Systems - (4.5 hours) Introduction to Pneumatics Pneumatics Power Circuit Connections Basic Cylinder Circuits

Unit 2 – Basic Pneumatic Circuits - (4.5 hours) Single Acting Cylinder Circuits Basic Motor Circuits Pneumatic Schematics

Unit 3 – Principles of Pneumatic Pressure and Flow - (4.5 hours)

Pressure VS. Cylinder Force Pneumatic Leverage Pressure and Volume Air Flow and Resistance

Unit 4 – Pneumatic Speed Control Circuits- (4.5 hours)

Air Flow Control and Measurement Flow Control Valves Speed Control

Unit 5 – Pneumatic DCV Operations - (4.5 hours)

Cam Valves Cam Valve Applications Two Way Valves

Unit 6 - Air Logic - (4.5 hours)

Externally Piloted Valves Introduction to Air Logic Air Logic Design

Unit 7 – Pneumatic Maintenance - (4.5 hours)

Air Filtration Water Removal Lubrication Servicing Pneumatic Components

Unit 8 – Moving Loads Pneumatically - (4.5 hours)

Pneumatic Cylinder Loads Cylinder Applications Component Sizing Pneumatic Motor Loads Air Bearings

Unit 9 – Vacuum Systems - (4.5 hours)

Vacuum Gauges Manometers Vacuum Generators Vacuum Applications

Unit 10 – Air Compressors - (4.5 hours)

Compressor Types Reciprocating Compressor Systems Compressor Flow Concepts Compressor Performance

SECTION 14 – (____ clock hours total)

HAAS Specific Training

Unit 1 – Introduction to CNC Machines - (3 hours) Introduction to CNC Machines Vertical Machines Horizontal Machines Lathes

Unit 2 – HAAS Control System Overview - (4.5 hours) DC Bus

Printed Circuit Boards Control Panel Drive Systems

Unit 3 – Installation and Setup - (15 hours)

Leveling Squaring Table Column Alignment Spindle Sweep

Unit 4 – Basic Mill Programming and Operation - (18.75 hours)

Job Planning, Bench work and Layout CNC Basics CNC Programming CNC Setup and Operation CAD/CAM

Unit 5 – Basic Lathe Programming and Operation - (18.75 hours)

Job Planning, Bench work and Layout CNC Basics CNC Programming CNC Setup and Operation CAD/CAM

Unit 7 – Introduction to Ballbar Testing - (8 hours)

Introduction to BallBar 360 degree Testing 220 degree Partial Arc Testing Data Analysis

Unit 8 – Maintenance and Troubleshooting- (7.5 hours)

Coolant Automatic Tool Changers and Turrets ESD and PCB's Transformers DC Bus Machine Grounding Hydraulic and Pneumatic Systems

Automatic Lubrication System Daily, Weekly, Monthly PM's

Unit 8 – HAAS proprietary training - (____ hours)

HFO can request trainer from HAAS to teach this portion of class in Vincennes or ask HAAS to send training information to Vincennes University for specific training.

SECTION 15 – (45 clock hours total)

Robotic Training

Unit 1 – Work Cell and Robot Safety - (2 hours) Work Cell Safety

Emergency Stops Safeguard Stops Limiting the Workspace Electrical Safety

Unit 2 – Robot Components - (2 hours)

What is a Robot? Manipulator Controller Human Machine Interface Cables

Unit 3 – Software Menus - (8 hours)

QuickSet Menu ABB Menu Status Bar Operator View Memory

Unit 4 – Coordinate Systems - (4 hours)

Introduction to Coordinate Systems Base Coordinate System World Coordinate System Tool Coordinate System Work Object Coordinate System

Unit 5 – Faults and Recovery - (4 hours)

Event Logs Recovery Backup and Restore Creating Systems Revolution Counter Calibration

Unit 6 - Robot Control Electrical System - (8 hours)

Computer Power Supplies Panel (Safety) Board Contact Board Axis Computer Serial Measurement Board Drive System Motors/Resolvers

Unit 7 – Programming - (12 hours)

Loading, Editing and Creating Programs Move Commands Input/Output Commands Decision Making Instructions Program Flow

SECTION 16 – (37.5 clock hours total) Review, Projects, Testing

Unit 1 – Projects/Mechatronics - (15 hours) Designing, Wiring, Troubleshooting Motor Control Systems Designing, Plumbing, Troubleshooting Fluid Power Systems Designing, Tuning, Troubleshooting Robotic Cell Systems

Unit 2 - Review - (15 hours)

Electrical Electrical Motor Control Electronic Sensors PLC's Fluid Power Robotics CNC Machines

Unit 3 – Testing - (7.5 hours)

Electrical Electrical Motor Control Electronic Sensors PLC's Fluid Power Robotics CNC Machines